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ABSTRACT

The boundary between two perfectly bonded single crystals plays a very important role in
determining the deformation of the bicrystal. This work addresses the role of the grain boundary
by considering the elevated hardening of a slip system due to a slip gradient. The slip gradients are
associated with geometrically necessary dislocations and their effects become pronounced when a
representative length scale of the deformation field is comparable to the dominant microstructural
length scale of a material. A new rate-dependent crystal plasticity theory is presented and has been
implemented within the finite element method framework. A planar bicrystal under uniform in-
plane loading is studied using the new crystal theory. The strain is found to be continuous but non-
uniform within a boundary layer around the interface. The lattice rotation is also non-uniform
within the boundary layer. The width of the layer is determined by the disorientation of the grains,
the hardening behavior of slip systems, and most importantly by the characteristic material length
scales. The overall yield strength of the bicrystal is also obtained. A significant grain-size
dependence of the yield strength, the Hall-Petch effect, is predicted.

INTRODUCTION

Conventional continuum mechanics theories assume that stress at a material point is a function of
state variables, primarily strain, at the same point only. This local assumption has long been
proved to be adequate when the wave length of a deformation field is much larger than the
dominant length scale of its micro-stmcture. However, when the two length scales are comparable,
the assumption is questionable as the material behavior at a point is influenced by the deformation
at neighboring points. Various non-local or Wain gradient continuum theories have been
proposed to model material deformation more accurately when local theories maybe inadequate,
notably [1-5]. Among them [1-2] were developed for linear elastic materials while [3-5] are for
plastic deformation.

Although there have been a considerable number of publications on strain gradient theories, most
of them deal with phenomenological theories for homogenized polycrystals. A new crystal
plasticity theory with strain gradient effects has been proposed [5]. The theory considers the
hardening effects due to both slip and slip gradients. The new crystal theory is applied to study the
grain-size effect of yield strength of a polycrystal [6]. In the theory, the slip and slip gradients are
related to the macroscopic strain and strain gradients and the slip gradients are indeed the spatial
derivatives of slip. This treatment, although valid in [6] for the special constitutive law used, needs
to be modified for a crystal having an incremental constitutive law. In [7], a new notion is
introduced for the slip gradients. It is based on a homogenization process of the crystal at two
different length scales, i.e., a macro scale at which a strain gradient theory applies and a micro
scale at which the material exhibits no strain gradient effects. Homogenization suggests that a slip
gradient in the constitutive law for a macroscopic material point is the gradient of slip at the
microscale, and it generally differs from the slip gradient at the macro scale. Adopting this notion,
a modified strain gradient crystal plasticity theory has been established in [7] based on the same
basic assumptions in [5-6].

A new finite element code, GRACY2D, has been developed for the modified strain gradient
crystal theory and is applied here to study the infinitesimally small deformation of a planar bicrystal
under in-plane loading. Attention is focused on the deformation around the grain boundary and on
the grain size effect on the overall yield strength of the bicrystal, the well-known Hall-Petch effect.



RATE-DEPENDENT STRAIN GRADIENT CRYSTAL PLASTICITY THEORY

In this section, a formulation of rate-dependent strain gradient crystal plasticity theory is
presented. The formulation is based on an alternative theory proposed by [5] and applied in a study
of the Hall-Petch effect [6]. A material point of a strain gradient theory solid cart sustain Cauchy
stress ~ij and double stress r~k. Deformation is characterized by strain Eij = (ui,j + uj i )/ 2 and

strain gradient qijk = uk,ij. Here a subscript comma indicates a partial derivative with respect to a

Cartesian coordinate. A principle of virtual work has been given in [2, 5] and will not be repeated
here for briefness of the presentation. The plastic part (indicated by a superscript p) of macroscopic
strain rate is related to the crystal slip rate through

. (a) (a)E; = ~~ ~ij ,

a
. (a) .where y Mthe slip rate on slip system

1 (a)m(ct) + s~)m~))
(~$)=~si j (1)

a Here s(a) and m(a) are the unit vectors in the slip

direction and slip plane normal direction of the cx-thslip system respectively. (A third unit vector

t(a) = s(a) x m(a) is the transverse direction.) Similarly,

where Y$a) is the micro slip rate gradient in the r-th Cartesian coordinate axis direction [7]. We

denote the micro slip rate gradients in the directions s(a), m(a) and t(a) as ~~), ~~) and yfa)
respectively. The work conjugates of the micro slip rate gradients along these crystallographic

directions are denoted as Q~), Q%) and Qy) respectively. As in [5-6], slip of crystallographic
system is assumed to depend on a scalar eflective shear stress defined as

T~)=((da))2+(/;1Q~))2 +(t’:Q$))2 +(f;1Q~))2~’2 (3)

where 1~, /’m and /’t are three constitutive length scales. Plastic flow of a slip system obeys the
following normality rule:

where

(5)

In this paper, a power-law creep model is assumed for the effective slip rate:

[)
&) l’n

Y:CO “ _
= ‘YO g(a)

where n is the rate-dependence index, lo a reference slip

system U. In the unloaded state all slip systems have the same
harden according to the following hardening law:

(6)

rate and g(a) the hardness of slip

initial hardness of to. Slip systems



(7)

Here q is a constant latent hardening index. The self-hardening modulus, h, is assumed to be a
constant. The hardening law (7) reflects the elevated hardening due to geometrically necessary

dislocations whose density is proportional to the slip gradients [5]. In [5-6], y~) is identified as

the macro slip rate gradient y!:). This imposes extra kinematic constraints which would generally
contradict the normality rule (Eqn.(4)). Based on a homogenization process of the crystal behavior

. ‘a) should be interpreted as the micro slip ;ate gradient and is generallyat two length scales, yr

different from ~~~) [7].
To complete the formulation, an elasticity constitutive law must be specified. All the

computations reported in this paper are obtained using the following elasticity constitutive law:

E

–(
.e 1

aij = l+V ‘ij +
)

— Ee~5ij , ~ijk = 2E/2~5k

1–2V
(8)

where E and v are the Young’s modulus and Poisson’s ratio of the crystal. Elastic anisotropy is
neglected. t’ is an internal length scale which is assumed to be a material parameter.

The above rate-dependent strain gradient crystal theo~ has been implemented within the finite
element method framework. A new tinite element code, GRACY2D, is developed for the special
case of crystals undergoing a plane deformation. The details of the finite element implementation
are presented in [8].

RESULTS

As an application of the strain gradient crystal plasticity theory, a bicrystal under plane strain
conditions is studied. As schematically shown in Fig. 1, the bicrystal consists of two perfectly”
bonded single crystal grains infinitely long in the xl- direction and of a height of D in the x2-
direction. The two grains are cut from the same single crystal but are misaligned during bonding.
Each grain is assumed to have only two slip systems. The slip direction and the slip plane normal
direction of each slip system are both in the plane. The bicrystal is loaded by a uniformly

prescribed velocity u: along the top surface while the bottom surface is perfectly gripped. Along

Figure 1. Schematic illustration of a planar bicrystal under in-plane loading
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both surfaces there arc no double stress tractions. The slip directions of the two slip systems in
grain #1 arc set at 3(F and -30~ with respect to the x2- axis to limit the number of variables in the
problem. All the results presented below are calculated using the following parameters: the average

shear strain rate ~12 = U; /2D is set at 10-3 per second, E = 103 x TO, v = 0.25, YO= 10–3s-1,
h =10x To, and n = 0.01 to approximate the limiting case of a rate-independent bicrystal. The

elastic length scale / and the three plastic length scales, is, /m and lt, we Wen to be identical.
The uniformity of the boundary conditions in the xl- direction dictates that the deformation is

also uniform in the direction. The finite element mesh for the computations reported in this paper is
drawn on a rectangular portion of the bicrystal ‘cut’ along the x3- direction. The width of the
rectangle in the xl- direction is 0.5/ and fixed for all computations. Periodic boundary conditions
are applied on the left and right hand-side surfaces of the mesh to mimic the uniformity of
deformation in the xl- direction.

Boundaq Lzyer of Non-unijorm Deformation
First consider a bicrystal of two large grains with D = 1004. Conventional crystal plasticity

theory predicts that shear stress is uniform throughout the whole structure in order to satisfy
equilibrium both in the body and on the surface. Substitution of the uniform shear stress into
crystal constitutive law leads to strain and lattice rotation distributions which am uniform in each
grain but discontinuous across the grain boundary. This is associated with the discontinuity in the
initial lattice orientation. The inclusion of strain gradient effects changes the deformation field
significantly near the grain boundary. The total shear strain 812 has a non-unifotm but continuous
distribution across the grain boundary; away from the grain boundary, the strain approaches the
conventional crystal theory predictions. The trend of e12 is broadly similar to that shown in [4] for
a phenomenological strain gradient theory solid and therefore will not be presented here. The slip
direction of each slip system rotates by

(1) = E12 cos2e +(E22 –&ll)sin0cosf3+@e (9)

where we is the elastic rotation angle of the material and is given by

The rotation of slip system (2) is plotted in Fig. 2 in which the lattice of grain #2 is misaligned by
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Figure 2. Distribution of the rotation angle of the second slip plane



I
I

I

2{)0counterclockwise from that of groin #1. The rotation has a non-uniform distribution around the
boundary. Similar distributions arc found for the material elastic rotation and rotation of slip
systcm (1). It is interesting to note that grain #1 rotates by a larger angle than grain #2 around the
interface. This suggests that the grains deform to accommodate each other, in that the mismatch of
the lattice orientations is reduced, though by a small amount. It remains to see to what extent the
lattice mismatch can be reduced at a finite deformation. It is worth pointing out that the
conventional theory predicts that the mismatch will be enhanced as indicated by the rotations away
from the interface. The rotation of slip plane (1) and the material elastic rotation have broadly
similarly distributions and therefore are not shown here.

In the strain gradient crystal theory, there are several length scales which are assumed to be
identical in the current problem. Because the width of the boundary layer is a function of the
bicrystal properties, e.g. lattice mismatch and the constitutive length scale /, the correlation
between numerical calculation and experimental measurement of lattice rotation provides a means
of determining /. Fig.3 shows the boundary layer width in the second grain, normalized by 1’, as
a function of the lattice mismatch angle A(l. The boundary layer width is chosen to be the distance
from the grain boundary at which the material elastic rotation angle differs by 0.20 from that remote
from the interface and it increases with overall straining. It is observed that when the mismatch
angle is close to 300, the layer width in grain #2 has a peak. Recall that the slip directions of grain
#1 are set at 300 and -300, at a mis-match of 300, grain #2 has one slip system with a Schmid
factor of 1.0, is therefore more compliant, undertakes a larger portion of the overall deformation
and has a more extended boundary layer. At 600 mismatch, grain #2 has one slip plane
perpendicular to x2- direction, therefore little material elastic rotation is needed.
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Figure 3. Width of the boundary layer in Grain #2 as a function of lattice mismatch angle

Hall - Petch Effect
It is well known that the yield strength of a polycrystal scales as the inverse square root of the

grain size in the material. This is the so-called Hall-Petch Effect Due to the lack of any constitutive
length scales, a conventional crystal plasticity theory fails to predict the Hall-Petch effect. The grain
size-dependence of the overall shear yield strength of the bicrystal shown in Fig. 1 is studied using
the current strain gradient crystal theory. The overall ‘yield strength’ of the bicrystal Zy is defined

as the surface traction per unit area at 6.1% plastic average strain. ZY is plotted in Fig.4 versus
grain size D for various lattice mismatch. It can be seen that the grain size effect diminishes as D
exceeds about 1001’.The yield strength increases significantly as D is decreased. The Hall-Petch
effect is most significant when the lattice mismatch is large, and it completely disappears when
there is no mismatch. A vanishing mismatch leads to no strain gradients, hence to no size-
dependence of the yield strength.
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CONCLUSIONS

A rate-dependent crystal plasticity theory with strain gradient effects is presented. It is based on
the physical notion of elevated strain hardening of slip systems due to geometrically necessary
dislocations. The new crystal theory is implemented within the finite element framework and is
used to study the deformation of a planar bicrystal under uniform in-plane loading. The strain and
crystal rotation are found to be non-uniform within a boundary layer. The boundary layer width is
determined by the grain boundary characteristics, such as lattice mismatch, and the material
constitutive length scales. The overall yield strength of the bicrystal is found to depend on the size
of the grains. The size effect is significant for a bicrystal with a large lattice mismatch.
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